Envision | Transform | Thrive

Bloom's Taxonomy Level: Application

Verbs: Providing, Supporting, Recommending

Task Acceleration:

Bloom's Taxonomy Level: Application

Verbs: Improving, Enhancing, Achieving

Task Augmentation:

Bloom's Taxonomy Level: Synthesis

Networks (prescriptive)

changes and patient responses.

Operation:

Bloom's Taxonomy Level: Synthesis

Verbs: Scaling, Adapting, Expanding

tasks, reducing human intervention.

Verbs: Automating, Replacing, Operating

AI/ML Capabilities: Autonomous Systems (prescriptive)

AI/ML Methods: Path Planning Algorithms (autonomous systems)

Bloom's Taxonomy Level: Synthesis

AI/ML Capabilities: Adaptive Systems (prescriptive)

AI/ML Methods: Adaptive Control (adaptive systems)

generated insights based on patient data.

Verbs: Augmenting, Combining, Expanding

AI/ML Capabilities: Augmented Intelligence (prescriptive)

Task Elasticity and Scalability:

Verbs: Accelerating, Speeding Up

Task Accuracy:

AI/ML Methods: Collaborative Filtering (multi-agent system

AI/ML Capabilities: Data Analytics (descriptive), Recommender System

AI/ML Methods: Time Series Forecasting (predictive modeling

AI/ML Capabilities: Machine Learning for Data Interpretation (predictive

Description: Augmenting surgical decision-making by integrating Al-

AI/ML Methods: Knowledge Graphs (augmented intelligence), Neural

Description: Adapting surgical plans based on real-time physiological

Full Task Automation and Autonomous

Description: Employing autonomous robotic systems for specific surgical

Al/ML Methods: Classification (data interpretation), Decision To

Bionic Fusion Strand Design: Surgical Suite, User/Surgeon Interface, User/Surgeon Experience

Bionic UX Design with Fusion Strands

Value Stream: Patient care from assessment through consultation, planning, rehearsal, preparation, and surgical procedure execution

User Journey(s)

User Experience Surgical Procedure

User Experience Assess Patient Condition **User Experience** Consult with Patient

User Experience Devise Surgical Approach

User Experience Conduct Surgical

Bionic Surgical Suite

User Motivation

User Objective

specific motivation or driver for why the user wants to engage in a UX interaction: I want to draw from medical procedures and diagnostics to devise a surgical approach, rehearse, visualize and employ methods to automate aspects and improve precision of the procedure

specific user experience objective of the user: I need the assistance of advanced sensors, medical diagnostics, and surgical assistive technologies to augment and enhance my surgical capabilities

specific outcome, effect, result the user is seeking/desiring: I want an intelligent assistant with

User Expectation

User Task/Step/Action

procedural knowledge and understanding of the patient condition and surgical skill, flexibility, and precision to provide expert assistance

 specific action a user is attempting to accomplish: Task= Patient Assessment, Task= Patient Consultation/Empathy, Task=Surgical Planning/Rehearsal/Contingency Planning/Outcome Prediction, Task = Surgical Procedure/Monitoring/Assist/Consultation

Bionic Experience Effect Type (Bionic UX Effects)

User Interface Modality

Bionic Intelligence Technology Area (Bionic Technology Taxonomy: Intelligence/Cognition Technol (Bionic System Functions Taxonomy: Intelligence Functions)

Bionic Integration Technology Area Bionic Technology Taxonomy: Integration Technologies) (Bionic System Functions Taxonomy: Integration Functions)

Bionic Infrastructure Technology Area (Bionic Technology Taxonomy: Infrastructure) (Bionic System Function Taxonomy: Infrastructure)

Bionic Transformation Technology Area (Bionic Technology Taxonomy: Transformation) (Bionic System Function Taxonomy: Transformation)

Surgical Fusion Strand Narrative

In this use case, we will explore how bionic effects, enhanced by various AI/ML capabilities, can improve the capabilities and outcomes of surgical procedures. These technologies will assist the surgical team in providing better patient care, enhancing decision-making, and optimizing surgical procedures. In the context of surgery, the integration of various AI/ML capabilities and methods enhances the surgical team's decision-making, precision, and efficiency. These technologies contribute to a safer and more effective surgery, ultimately improving patient outcomes and the overall quality of care.

Bloom's Taxonomy Level: Application Verbs: Achieving, Ensuring, Improving AI/ML Methods: Robotic Control Algorithms (robotic precisio surgery and provide appropriate responses. Verbs: Understanding, Recognizing, Classifying AI/ML Capabilities: Emotion Recognition (descriptive), Natural Language Processing AI/ML Methods: Facial Expression Analysis (emotion recognition), Sentiment Analysis

AI/ML Capabilities: Physiological Response Analysis (descriptive), Adaptive Control AI/ML Methods: Signal Processing (physiological response analysis), Adaptive Control Algorithms (prescriptive)

Description: Enhancing surgical instruments with haptic feedback to provide surgeons

Bloom's Taxonomy Level: Application Verbs: Enhancing, Strengthening, Improving AI/ML Capabilities: Haptic Feedback (prescriptive) AI/ML Methods: Feedback Control Systems (haptic feedback) apability Area 1: Sensory Augmentation:

Capability Area 1: Physical Enhancement:

Description: Augmenting surgeons' senses with Al-powered augmented reality displays for enhanced visualization Bloom's Taxonomy Level: Application Verbs: Augmenting, Enhancing, Sensing AI/ML Capabilities: Augmented Reality (prescriptive) AI/ML Methods: Image Processing (augmented reality)

(reinforcement learning)

apability Area 2: Mentoring:

Capability Area 1: Task Precision:

Description: Providing real-time guidance and advice to the surgical team using expert systems and knowledge bases. Bloom's Taxonomy Level: Application Verbs: Educating, Providing, Advising AI/ML Capabilities: Expert Systems (descriptive and prescriptive), Reinforcement Learning (prescriptive) AI/ML Methods: Rule-Based Inference (expert systems), Adaptive Decision-Making

Bionic UX Effects

Mentoring

Collaboration

Empathizing

Partial Task Automation

Task Acceleration

Immersion (UX/VR/AR)

Task Augmentation

Task Elasticity & Scalability

> Task Autonomy

Task Precision

Task Accuracy

Decision Support